Context matters: Towards extracting a citation's context using linguistic features

THE UNIVERSITY of EDINBURGH informatics

danielduma@gmail.com

Daniel Duma, Charles Sutton, Ewan Klein

TL;DR

- **Aim:** recommend potential citations at a particular location in a draft paper.
- **Task**: select the context for which to recommend citations **Evaluation**: attempt to recover original citations in existing published papers from the whole document collection
- **Previous work**: traditionally all contexts are extracted using symmetric windows over words or sentences
- **Approach:** compare symmetrical methods for extracting a citation's context: window-of-words and window-ofsentences with a human oracle selecting relevant sentences **Corpus:** ACL Anthology Corpus (AAC)

A variety of coherence theories have been developed over the years [...] and their principles have found application in many symbolic text generation systems (e.g. CITATION NEEDED)

(Adapted from Barzilay and Lapata, 2005)

Recommendations

1. Motivation

- D. Scott, C. S. de Souza. 1990. Getting the message across in RSTbased text generation. In R. Dale, C. Mellish, M. Zock, eds., Current Research in Natural Language Generation, 47–73. Academic Press.
- R. Kibble, R. Power. 2004. Optimising referential coherence in text generation. Computational Linguistics, 30(4):401–416.
- E. H. Hovy. 1987. Generating natural language under pragmatic constraints. Journal of Pragmatics, 11(6), 689-719.
- All previous work on citation recommendation uses symmetric methods to extract the context of a citation
- Are symmetric methods optimal?

2. Annotated citation contexts

Athar and Teufel (2012) – *Context-Enhanced Citation* Sentiment Detection

- **Corpus**: ACL Anthology
- Annotated contexts: ~1800 (citations to 20 selected papers)
- Per-sentence **annotations**:
- **relevant** (3115 sentences)
- sentiment:
 - (**p**)ositive (261)
 - (**n**)egative (365) ullet
 - (**o**)bjective (2489)
- Most sentences containing a citation are labelled objective. (1929)

3. Evaluation

1. Index document collection

AAC: ~28k documents, excluding annotated documents

2. Generate queries

From each of the annotated citation contexts, remove stopwords and generate one query using:

- Window of words (30, 50, 100, 500)
- Window of sentences (1 only, 1 up, 1 down, 1 up + 1 down, 2up+2down, paragraph)
- Oracle / human annotations (all relevant, combinations of positive, negative and objective)

3. Evaluate queries

Run queries, attempt to retrieve original citation from document collection, measure Mean Reciprocal Rank (MRR)

4. Context extraction methods

Annotation Sentence

This suggests that the performance which may be obtained for this task may be

Extraction methods

Mindow of toleona

^	lower than has been achieved for standard text.	s lask may be	(30 up, 30 down)
Х	Further insight into the task can be gained from determining the d	egree to which the	(30 up, 30 uovii)
	subjects agreed.		
Ο	Carletta (1996) argues that the kappa statistic (a) should be adopted to judge annotator consistency for classification tasks in the area of discourse and dialogue		
	analysis.	se and dialogue	
Х	It is worth noting that the problem of sentence boundary detection presented so far		Window of sentences (2 up, 2 down)
	in this paper has been formulated as a classification task in which each token boundary has to be classified as either being a sentence boundary or not.		
Ο	Carletta argues that several incompatible measures of annotator agreement have		
	been used in discourse analysis, making comparison impossible.		Oracle - annotated
0	Her solution is to look to the field of content analysis, which has already experienced		sentences (p + n + o)
	these problems, and adopt their solution of using the kappa statist	tic.	
	(from Stevenson and Gaizauskas (2000) - Experiments on Sentence Boundary Detection)		
	5. Results		6. Discussion
	Evaluation: Mean Reciprocal Rank		
nnotated sentence n 0.0134		Findings:	la autoarforme all evenetrical
		\blacksquare \blacksquare \Box	TO AUTRARTARME ALLEVIMMATRICAL

0.147

0.1505

0.16

0.12

0.14

0.1533

0.1575

0.18

0.02

0

0.04

0.06

0.08

0.1

- Human oracle outperiornis all symmetrical methods. Symmetrical windows of either tokens or sentences are therefore not optimal.
- The annotated sentiment of sentences was not useful for query extraction. The more sentences we include that were annotated as relevant, the higher the score.
- More query terms is not always better. Carefully selecting relevant text spans for context extraction improves results.

Future work: keyword extraction using linguistic features. Train a machine learning classifier to generate queries from sub-sentence-length spans.